
	 11 · Linguistics and Computational Semantics

	 11 · 1

Draft Version 0.81 — 2018 · Mar · 3

	 11	Linguistic and Computational
		 Semantics

		 Abstract
I argue that because the very concept of computation rests on
notions of interpretation, the semantics of natural languages
and the semantics of computational formalisms are in the
deepest sense the same subject. The attempt to use computa-
tional formalisms in aid of an explanation of natural language
semantics, therefore, is an enterprise that must be undertaken
with particular care. I describe a framework for semantical
analysis that I have used in the computational realm, and sug-
gest that it may serve to underwrite computationally-oriented
linguistic semantics as well. The major feature of this frame-
work is the explicit recognition of both the declarative and
the procedural import of meaningful expressions; I argue that
whereas these two viewpoints have traditionally been taken
as alternative, any comprehensive semantical theory must ac-
count for how both aspects of an expression contribute to its
overall significance.

I have argued elsewhere1 that the distinguishing mark of those
objects and processes we call computational has to do with at-

tributed semantics: we humans find computational process-
es coherent exactly because we attach semantical significance

1. Smith (1982b).

a2

a1

11 · 2	 Indiscrete Affairs · I

Draft Version 0.81 — 2018 · Mar · 3

to their behavior. ingredients, and so forth. Put another way,
computers, on this view, are those devices that we understand
by deploying our linguistic facilities. For example. the reason that
a calculator is a computer, but a car is not, is that we take the
ingredients of the calculator to be symbolic (standing, in this
particular case, for numbers and functions and so forth), and
understand the interactions and organisation of the calcula-
tor in terms of that interpretation (this part divides, this part
represents the sum, and so on). Even though by and large we
are able to produce an explanation of the behavior that does
not rest on external semantic attribution (this is the formal-
ity condition mentioned by Fodor, Haugeland, and others2),
we nonetheless speak, when we use computational terms, in
terms of this semantics. These semantical concepts rest at the
foundations of the discipline: the particular organisations that
computers have—their computational raison d’être—emerge
not only from their mechanical structure but also from their
semantic interpretability. Similarly, the terms of art employed
in computer science—program, compiler. implementation, in-
terpreter, and so forth—will ultimately be definable only with
reference to this attributed semantics; they will not, in my
view, ever be found reducible to non-semantical predicates.3

This is a ramifying and problematic position, which I can-
not defend here.4 I may simply note, however, the overwhelm-
ing evidence in favour of a semantical approach manifested

2. Fodor (1978), Fodor (1980), Haugeland (forthcoming).
3. At least until the day arrives—if ever—when a successful psychology
of language is presented wherein all of human semanticity is explained
in non-semantical terms.
4. Problematic because it defines computation in a manner that is de-
rivative on mind (in that language is fundamentally a mental phenom-
enon), thus dashing the hope that computational psychology will offer
a release from the semantic irreducibility of previous accounts of hu-
man cognition. Although I state this position and explore some of its
consequences in Smith (1982b), a considerably fuller treatment will be
provided in Smith (forthcoming).

a4

a5

a6

a6

a3

	 11 · Linguistics and Computational Semantics

	 11 · 3

Draft Version 0.81 — 2018 · Mar · 3

by everyday computational language. Even the simple view of
computer science as the study of symbol manipulation5 reveals
this bias. Equally telling is the fact that programming languag-
es are called languages. In addition, language-derived concepts
like name and reference and semantics permeate computational
jargon (to say nothing of interpreter, value, variable, memory,
expression, identifier and so on)—a fact that would be hard to
explain if semantics were not crucially involved. It is not just
that in discussing computation we use language; rather, in dis-
cussing computation we use words that suggest that we are
also talking about linguistic phenomena.

The question I will focus on in this paper, very briefly, is
this: if computational artefacts are fundamentally linguistic,
and if, therefore. it is appropriate to analyze them in terms of
formal theories of semantics (it is apparent that this is a wide-
ly held view), then what is the proper relationship between the
so-called computational semantics that results, and more stan-
dard linguistic semantics (the discipline that studies people
and their natural languages: how we mean, and what we are
talking about, and all of that good stuff)? And furthermore,
what is it to use computational models to explain natural lan-
guage semantics, if the computational models are themselves
in need of semantical analysis? On the face of it, there would
seem to be a certain complexity that should be sorted out.

In answering these questions I will argue approximately as
follows: in the limit computational semantics and linguistic se-
mantics will coincide, at least in underlying conception, if not
in surface detail (for example some issues, like ambiguity, may
arise in one case and not in the other). Unfortunately, how-
ever, as presently used in computer science the term ‘seman-
tics’ is given such an operational cast that it distracts attention
from the human attribution of significance to computational
structures.6 In contrast, the most successful models of natural

5. See for example Newell (1980).
6. The term “semantics” is only one of a large collection of terms, un-

a8

a9

a10

a11

11 · 4	 Indiscrete Affairs · I

Draft Version 0.81 — 2018 · Mar · 3

language semantics, embodied for example in standard model
theories and even in Montague’s program, have concentrated
almost exclusively on referential or denotational aspects of de-
clarative sentences. Judging only by surface use, in other words,
computational semantics and linguistic semantics appear al-
most orthogonal in concern, even though they are of course

similar in style (for exam-
ple they both use meta-
theoretic mathematical
techniques—functional
composition, and so
forth—to recursively

specify the semantics of complex expressions from a given set
of primitive atoms and formation rules). It is striking, however,
to observe two facts. First, computational semantics is being
pushed (by people and by need) more and more towards de-
clarative or referential issues. Second, natural language seman-
tics, particularly in computationally-based studies, is focusing
more and more on pragmatic questions of use and psycho-
logical import. Since computational linguistics operates under
the computational hypothesis of mind, psychological issues
are assumed to be modelled by a field of computational struc-
tures and the state of a processor running over them; thus
these linguistic concerns with “use” connect naturally with the

“operational” flavour of standard programming language se-
mantics. It seems not implausible, therefore—I betray caution
with the double negative—that a unifying framework might
be developed.

fortunately, that are technical terms in computer science and in the at-
tendant cognitive disciplines (including logic, philosophy of language,
linguistics, and psychology), with different meanings and different con-
notations. Reference, interpretation, memory, and value are just a few ex-
amples of the others. It is my view that in spite of the fact that semanti-
cal vocabulary is used in different ways, the fields are both semantical in
fundamentally the same ways: a unification of terminology would only
be for the best.

Syntactic Domain Semantic DomainS D
φ

Figure 1 — Traditional (simple) semantic model

a12

a13

a14

a15

	 11 · Linguistics and Computational Semantics

	 11 · 5

Draft Version 0.81 — 2018 · Mar · 3

It will be the intent of this paper to present a specific, if pre-
liminary, proposal for such a framework. First, however, some
introductory comments. In a general sense of the term, seman-
tics may be taken as the study of the relationship between enti-
ties or phenomena in a syntactic domain s and corresponding
entities in a semantic domain d, as pictured in figure 1.

I will call the function mapping elements from the first do-
main into elements of the second an interpretation function

(to be sharply distinguished7 from what in computer science
is called an interpreter, which is a different beast altogether).
Note that the question of whether an element is syntactic or
semantic is a function of the point of view; the syntactic do-
main for one interpretation function can readily be the seman-
tic domain of another (and a semantic domain may of course
include its own syntactic domain).

Not all relationships, of course, count as semantical; the
“grandmother” relationship fits into the picture just sketched,

but stakes no claim on be-
ing semantical. Though it
has often been discussed
what constraints on such
a relationship characterize
genuinely semantical ones
(compositionality or re-
cursive specifiability, and
a certain kind of formal
character to the syntactic
domain, are among those

typically mentioned), I will not pursue such questions here.
Rather, I will complicate the diagram as indicated in figure 2,
so as to enable us to characterize a rather large class of compu-
tational and linguistic formalisms.

n1 and n2 are intended to be notational or communicational
expressions, in some externally observable and consensually

7. An example of the phenomenon noted in note 6.

Structure S1 Structure S2

φ φ

Notation N1 Notation N2

θ θ-

Designation D1 Designation D2

ψ

Figure 2 — More general semantic model

a16

a17

11 · 6	 Indiscrete Affairs · I

Draft Version 0.81 — 2018 · Mar · 3

established medium of interaction, such as strings of charac-
ters, streams of words, or sequences of display images on a
computer screen. The relationship θ is an interpretation func-
tion mapping notations into internal elements of some process
over which the primary semantical and processing regimens
are defined. In first-order logic, s1 and s2 would be something
like abstract derivation tree types of first-order formulae;
if the diagram were applied to the human mind, under the
hypothesis of a formally encoded mentalese, s1 and s2 would
be tokens of internal mentalese, and θ would be the function
computed by the “linguistic” faculty (on a view such as that of
Fodor8). In adopting these terms I mean to be speaking very
generally; thus I mean to avoid, for example, any claim that to-
kens of English are internalized (a term I will use for θ) into
recognizable tokens of mentalese. In particular. the proper ac-
count of θ for humans could well simply describe how the field
of mentalese structures, in some configuration, is transformed
into some other configuration, upon being presented with
a particular English sentence; this would still count, on this
view, as a theory of θ.

In contrast, φ is the interpretation function that makes
explicit the standard denotational significance of linguistic
terms, relating, we may presume, expressions in S to the world
of discourse. The relationship between my mental token for
T. S. Eliot, for example, and the poet himself, would be for-
mulated as part of φ. Again, I am speaking very broadly; φ is
intended to manifest what, paradigmatically, expressions are
about, however that might best be formulated (φ includes for
example the interpretation functions of standard model theo-
ries). ψ, in contrast, relates some internal structures or states
to others—one can imagine it specifically as the formally com-
puted derivability relationship in a logic (⊢), as the function
computed by the primitive language processor in a computa-
tional machine (i.e., as Lisp’s eval), or more generally as the

8. Fodor (forthcoming)

a18

	 11 · Linguistics and Computational Semantics

	 11 · 7

Draft Version 0.81 — 2018 · Mar · 3

function that relates one configuration of a field of symbols
to another, in terms of the modifications engendered by some
internal processor computing over those states. (φ and ψ are
named, for mnemonic convenience, by analogy with philoso-
phy and psychology, since a study of φ is a study of the relation-
ship between expressions and the world—since philosophy
takes you “out of your mind,” so to speak—whereas a study of
ψ is a study of the internal relationships between symbols, all
of which, in contrast, are “within the head” of the person or
machine.)

Some simple comments. First, n1, n2, s1, s2, d1, and d2 need
not all necessarily be distinct: in a case where s1 is a self-refer-
ential designator, for example, d1 would be the same as s1; sim-
ilarly, in a case where ψ computed a function that was desig-
nation-preserving, then d1 and d2 would be identical. Secondly,
we need not take a stand on which of ψ and φ has a prior claim
to being the semantics of s1. In standard logic, ψ (i.e., derivabil-
ity: ⊢) is a relationship, but is far from a function, and there is
little tendency to think of it as semantical; a study of ψ is called
proof theory. In computational systems, on the other hand, ψ
is typically much more constrained, and is also, by and large,
analyzed mathematically in terms of functions and so forth, in
a manner much more like standard model theories. Although
in my own view it seems a little far-fetched to call the internal
relationships (the “use” of a symbol) semantical, it is nonethe-
less true that we are interested in characterizing both, and it
is unnecessary to express an preference. For discussion, I will
refer to the φ-semantics of a symbol or expression as its de-

clarative import, and refer to its ψ-semantics as its proce-

dural consequence. I have heard it said in other quarters
that “procedural” and “declarative” theories of semantics are
contenders;9 to the extent that I have been able to make sense
of these notions, it appears that we need both.

It is possible to use figure 2 to characterize a variety of stan-

9. Woods (1981)

11 · 8	 Indiscrete Affairs · I

Draft Version 0.81 — 2018 · Mar · 3

dard formal systems. In the standard models of the λ-calculus.
for example, the designation function φ takes λ-expressions
onto functions; the procedural regimen ψ, usually consist-
ing of α- and β-reductions, can be shown to be φ-preserving.
Similarly, if in a standard predicate logic we take φ to be (the
inverse of the) satisfaction relationship, with each element of
S being a sentence or set of sentences, and elements of D be-
ing those possible worlds in which those sentences are true,
and similarly take ψ as the derivability relationship, then
soundness and completeness can be expressed as the equation
ψ(s1, s2) ≡ [d1 ⊆ d2]. As for all formal systems (these presum-
ably subsume the computational ones), it is crucial that ψ be
specifiable independent of φ. The λ-calculus and predicate
logic systems, furthermore, have no notion of a processor with
state; thus the appropriate ψ involves what we may call local

procedural consequence, relating a simple symbol or set of
symbols to another set. In a more complex computational cir-
cumstance, as I will show below, it is appropriate to character-
ize a more complex full procedural consequence involving
not only simple expressions, but fuller encodings of the state
of various aspects of the computational machine (for example.
at least environments and continuations in the typical compu-
tational case10).

An important consequence of the analysis illustrated in
figure 2 is that it enables one to ask a question not typically
asked in computer science, about the (φ-) semantic character
of the function computed by ψ. Note that questions about
soundness and completeness in logic are exactly questions of
this type. In separate research,11 I have shown, by subjecting
[them] to this kind of analysis, that computational formalisms
can be usefully analyzed in these terms as well. In particular,

10. For a discussion of continuations see Gordon (1979), Steele and
Sussman (1978), and Smith (1982a) [see ch. 3]; the formal device is de-
veloped in Strachey & Wadsworth (1974).
11. Smith (1982a) [see ch. 3].

a19

a20

	 11 · Linguistics and Computational Semantics

	 11 · 9

Draft Version 0.81 — 2018 · Mar · 3

I demonstrated that the universally accepted Lisp evalua-
tion protocol is semantically confused, in the following sense:
sometimes it preserves φ (i.e. φ(ψ(s))=φ(s)), and sometimes
it embodies φ (thereby “de-referencing” its inputs: ψ(s)=φ(s).
The traditional Lisp notion of evaluation. in other words, con-
flates simplification and reference relationships, to its peril (in
that report I propose some Lisp dialects in which these two
notions are kept much more neatly and strictly separate). The
current moral, however. is merely that this approach allows
the question of the semantical import of ψ to be asked.

As well as considering Lisp, we may use our diagram to
characterize various linguistically oriented projects carried on
under the banner of “semantics.” Model theories and formal
theories of language (I am including Tarski and Montague
in one sweep) have concentrated primarily on φ. Natural
language semantics in some quarters12 focuses on θ—on the

“translation” of natural language into an internal medium—al-
though the question of what aspects of a given sentence must
be preserved in such a translation are of course of concern (no
translator could ignore the salient properties, semantical and
otherwise, of the target language, be it mentalese or predicate
logic, since the endeavour would otherwise be without con-
straint). Lewis (for one) has argued that the project of articu-
lating θ—an endeavour he calls markerese semantics—can-
not really be called semantics at all,13 since it is essentially a
translation relationship, although it is worth noting that θ in
computational formalisms is not always trivial, and a case can
at least be made that many superficial aspects of natural lan-
guage use, such as the resolution of indexicals, may be resolved
at this stage (if for example you say “I am warm” then I may
internalise your use of the first person pronoun into my inter-
nal name for you).

12. A classic example is Katz and Postal (1964), but much of the recent
ai research in natural language can be viewed in this light.
13. Lewis (1972).

a21

11 · 10	 Indiscrete Affairs · I

Draft Version 0.81 — 2018 · Mar · 3

Those artificial intelligence researchers working in knowl-
edge representation, perhaps without too much distortion, can
be divided into two groups: (i) those whose primary seman-
tical allegiance is to φ, and who (perhaps as a consequence)
typically use an encoding of first-order logic as their represen-
tation language; and (ii) those who concern themselves pri-
marily with ψ, and who therefore (legitimately enough) reject
logic as even suggestive (ψ in logic—derivability—is a rela-
tively unconstrained relationship, for one thing; secondly, the
relationship between the entailment relationship ⊨, to which
derivability is a hopeful approximation, and the proper “ψ” of
rational belief revision, is at least a matter of debate14).

Programming language semantics, for reasons that can at
least be explored, if not wholly explained, have focused pri-
marily on ψ, although in ways that tend to confuse it with φ.
Except for Prolog, which borrows its φ straight from a subset
of first-order logic, and the [reconstructed] Lisps mentioned
earlier,15 I have never seen a semantical account of a program-
ming language that gave independent accounts of φ and ψ.
There are complexities, furthermore, in knowing just what the
proper treatment of general languages should be. In a separate
paper16 I argue that the notion program is inherently defined
as a set of expressions whose (φ-) semantic domain includes
data structures (and set-theoretic entities built up over them).
In other words, in a computational process that deals with
finance, say, the general data structures will likely designate
individuals and money and relationships among them, but
the terms in that part of the process called a program will not
designate these people and their money, but will instead desig-
nate the data structures that designate people and money (plus of
course relationships and functions over those data structures).
Even on a declarative view like mine, in other words, the ap-

14. Israel (1980).
15. For a discussion of Prolog see Clocksin & Mellish (1981); the Lisps
are described in Smith (1982a) [see ch. 3].
16. [See ch. 3].

a22

a23

	 11 · Linguistics and Computational Semantics

	 11 · 11

Draft Version 0.81 — 2018 · Mar · 3

propriate semantic domain for programs is built up over data
structures—a situation strikingly like the standard semantical
accounts that take abstract records or locations or whatever
as elements of the otherwise mathematical domain for pro-
gramming language semantics. It may be that this fact that all
base terms in programs are meta-syntactic that has spawned
the confusion between operations and reference in the com-
putational setting.

Although the details of a general story remain to be worked
out, the Lisp case mentioned earlier is instructive, by way of
suggestion as to how a more complete computational theory
of language semantics might go. In particular, because of the
context relativity and non-local effects that can emerge from
processing a Lisp expression, φ is not specifiable in a strict
compositional way. ψ—when taken to include the broadest
possible notion that maps entire configurations of the field
of symbols and of the processor itself onto other configura-
tions and states—is of course recursively specifiable (the same
fact, in essence, as saying that Lisp is a deterministic formal
calculus). A pure characterization of ψ without a concomitant
account of φ, however, is unmotivated—as empty as a speci-
fication of a derivability relationship would be for a calculus
for which no semantics had been given. Of more interest is
the ability to specify what I call a general significance func-

tion Σ, which recursively specifies ψ and φ together (this is
what I was able to do for Lisp). In particular, given any ex-
pression s1, any configuration of the rest of the symbols, and
any state of the processor, the function Σ will specify the
configuration and state that would result (i.e., it will specify
the use of s1), and also the relationship to the world that the
whole signifies. For example, given a Lisp expression of the
form (+ 1 (prog (setq a 2) a)), Σ would specify that the whole
expression designated the number three, that it would return
the numeral ‘3’, and that the machine would be left in a state

a24

11 · 12	 Indiscrete Affairs · I

Draft Version 0.81 — 2018 · Mar · 3

in which the binding of the variable a was changed to the nu-
meral ‘2’. A modest result; what is important is merely (i) that
both declarative import and procedural significance must be
reconstructed in order to tell the full story about Lisp; and (ii)
that they must be formulated together.

Rather than pursue this view in detail, it is helpful to set
out several points that emerge from analyses developed within
this framework:

1.	 In most programming languages, θ can be specified
compositionally and independently of φ or ψ—this
amounts to a formal statement of Fodor’s modularity
thesis for language.17 In the case of formal systems, θ is
often context-free and compositional, but not always
(reader macros can render it opaque, or at least inten-
sional, and some languages such as Algol are appar-
ently context-sensitive). It is noteworthy. however. that
there have been computational languages for which θ
could not be specified independently of ψ—a fact that
is often stated as the fact that the programming lan-
guage “cannot be parsed except at runtime” (Teco and
the first versions of Smalltalk had this character).

2.	 Since Lisp is computational, it follows that a full ac-
count of its ψ can be specified independent of φ; this
is in essence the formality condition. It is important to
bring out, however. that a local version of ψ will typi-
cally not be compositional in a modem computational
formalism, even though such locality holds in purely
extensional context-free side-effect free languages
such as the λ-calculus.

3.	 It is widely agreed that ψ does not uniquely determine
φ (this is the “psychology narrowly construed” and the
concomitant methodological solipsism of Putnam and
Fodor and others18). However this fact is compatible

17. Fodor (forthcoming).
18. The term “methodological solipsism” is from Putnam (1975); see also

a26

a27

a25

	 11 · Linguistics and Computational Semantics

	 11 · 13

Draft Version 0.81 — 2018 · Mar · 3

with our foundational claim that computational sys-
tems are distinguished in virtue of having some version
of φ as part of their characterization. A very similar
point can be made for logic: although any given logic
can (presumably) be given a mathematically-specified
model theory, that theory does not typically tie down
what is often called the standard model or interpreta-
tion—the interpretation that we use. This fact does
not release us, however, from positing as a candidate
logic only a formalism that humans can interpret.

4.	 The declarative interpretation [function] φ cannot be
wholly determined independent of ψ, except in purely
declarative languages (such as the λ-calculus and logic
and so forth). This is to say that without some account
of the effect on the processor of one fragment of a
whole linguistic structure, it may be impossible to say
what that processor will take another fragment as des-
ignating. The use of setq in Lisp is an example; natural
language instances will be explored below.

This last point needs a word of explanation. It is of course pos-
sible to specify φ in mathematical terms without any explicit
mention of a ψ-like function; the approach I use in Lisp de-
fines both ψ and φ in terms of the overarching function Σ men-
tioned above, and I could of course simply define φ without
defining ψ at all. My point, rather, is that any successful defini-
tion of φ will effectively have to do the work of ψ, more or less
explicitly, either by defining some identifiable relationship, or
else by embedding that relationship within the meta-theoretic
machinery. I am arguing, in other words, only that the subject
I intend ψ to cover must be treated in some fashion or other.

What is perhaps surprising about all of this machinery is
that it must be brought to bear on a purely procedural lan-
guage—all three relationships (θ, φ, and ψ) figure crucially

Fodor (1980).

a28

11 · 14	 Indiscrete Affairs · I

Draft Version 0.81 — 2018 · Mar · 3

in an account even of Lisp. I are not suggesting that Lisp is
like natural languages; to point out just one crucial differ-
ence, there is no way in Lisp or in any other programming
language (except Prolog) to say anything, whereas the ability
to say things is clearly a foundational aspect of any human
language. The problem in the procedural languages is one of
what we may call assertional force: although it is possible to
construct a sentence-like expression with a clear declarative
semantics (such as some equivalent of “x=3”), one cannot use
it in such a way as to actually mean it—so as to have it carry
any assertional weight. That is, it is trivial to set some variable
x to 3, or to ask whether x is 3, but there is no way to state that
x is 3. It should be admitted, however, that computational lan-
guages bearing assertional force are under considerable cur-
rent investigation. This general interest is probably one of the
reasons for Prolog’s emergent popularity; other computation-
al systems with an explicit declarative character include for
example specification languages, data base models, constraint
languages, and knowledge representation languages in Artifi-
cial Intelligence (ai). We can only assume that the appropri-
ate semantics for all of these formalisms will align even more
closely with an illuminating semantics for natural language.

What does all of this have to do with natural language, and
with computational linguistics? The essential point is this: if
this characterization of formal systems is tenable, and if the
techniques of standard programming language semantics
can be fit into this mold, then it may be possible to combine
those approaches with the techniques of programming lan-
guage semantics and of logic and model theories, to construct
complex and interacting accounts of ψ and of φ. To take just
one example, the techniques that are used to construct math-
ematical accounts of environments and continuations might
be brought to bear on the issue of dealing with the complex
circumstances involving discourse models, theories of focus

a29

	 11 · Linguistics and Computational Semantics

	 11 · 15

Draft Version 0.81 — 2018 · Mar · 3

in dealing with anaphora, and so on; both cases involve an
attempt to construct a recursively specifiable account of non-
local interactions among disparate fragments of a composite
text. But the contributions can proceed in the other direction
as well: even from a very simple application of this framework
to this circumstance of Lisp, for example, I have been able to
show how an accepted computational notion fails to cohere
with our attributed linguistically based understanding, involv-
ing us in a major reconstruction of Lisp’s foundations. The
similarities are striking.

My claim, in sum, is that similar phenomena occur in pro-
gramming languages and natural languages, and that each
discipline could benefit from the semantical techniques devel-
oped in the other. Some examples of these similar phenomena
will help to motivate this view. The first is the issue of the ap-
propriate use of noun phrases: as well as employing a noun
phrase in a standard extensional position, natural language se-
mantics has concerned itself with more difficult cases such as
intensional contexts (as in the underlined designator in I didn’t
know that The Big Apple was an island, where the co-designat-
ing term ‘New York’ cannot be substituted without changing
the meaning), the so-called attributive/referential distinction
of Donellan19 (the difference, roughly, between using a noun
phrase like “the man with a martini” to inform you that some-
one is drinking a martini, as opposed to a situation where one
uses the hearer’s belief or assumption that someone is drink-
ing a martini to refer to him), and so on. Another example
different from either of these is provided by the underlined
term in For the next 20 years let’s restrict the President’s salary to
$20,000, on the reading in which after Reagan is defeated he is
allowed to earn as much as he pleases, but his successor comes
under the constraint. The analogous computational cases in-
clude for example the use of an expression like (the formal
analog of) make the sixth array element be 10 (i.e., a(6) := 10),

19. Donnellan (1966).

11 · 16	 Indiscrete Affairs · I

Draft Version 0.81 — 2018 · Mar · 3

where we mean not that the current sixth element should
be 10 (the current sixth array element might at the moment
be 9, and 9 cannot be 10), but rather that we would like the
description “the sixth array element” to refer to 10 (so-called

“l-values,” analogous to MacLisp’s setf construct). Or, to take
a different case, suppose we say “set x to the sixth array ele-
ment” (i.e., x := a(6)), where we mean not that x should be set
to the current sixth array clement, but that it should always be
equal to that element (stated computationally this might be
phrased as saying that x should “track” a(6); stated linguistical-
ly we might say that x should mean “the sixth array element”).
Although this is not a standard type of assignment, the new
constraint languages provide exactly such facilities, and mac-
ros (classic computational intensional operators) can be used
in more traditional languages for such purposes. Or, for a fi-
nal example, consider the standard declaration: integer x, in
which the term ‘x’ refers neither to the variable itself (variables
are variables, not numbers), nor to its current designation, but
rather to whatever will satisfy the description “the value of x”
at any point in the course of a computation. All in all, we can-
not ignore the attempt on the computationalists’ part to pro-
vide complex mechanisms so strikingly similar to the complex
ways we use noun phrases in English.

A very different sort of linguistic phenomenon that occurs
in both programming languages and in natural language is
what we might call “premature exits”: cases where the process-
ing of a local fragment aborts the standard interpretation of
an encompassing discourse. If for example I say to you I was
walking down the street that leads to the house that Mary’s aunt
used to ... oh, forget it; I was taking a walk, then the fragment

“forget it” must be used to discard the analysis of some amount
of the previous sentence. The grammatical structure of the
subsequent phrase determines how much has been discarded,
of course; the sentence would still be comprehensible if the

	 11 · Linguistics and Computational Semantics

	 11 · 17

Draft Version 0.81 — 2018 · Mar · 3

phrase “an old house I like” followed the “forget it.” We are not
accustomed to semantical theories that deal with phenomena
like this, of course, but it is clear that any serious attempt to
model real language understanding will have to face them. My
present point is merely that continuations20 enable compu-
tational formalisms to deal exactly with the computational
analogs of this: so-called escape operators such as MacLisp’s
throw and catch and quit.

In addition, a full semantics of language will want to deal
with such sentences as If by ‘flustrated’ you mean what I think,
then she was certainly flustrated. The proper treatment of the
first clause in this sentence will presumably involve lots of

“ψ”-sorts of considerations: its contribution to the remain-
der of the sentence has more to do with the mental states of
speaker and hearer than with the world being described by
the presumed conversation. Once again, the overarching com-
putational hypothesis suggests that the way these psychologi-
cal effects must be modelled is in terms of alterations in the
state of an internal process running over a field of computa-
tional structures,

As well as these specific examples, a couple of more general
morals can be drawn, important in that they speak directly to
styles of practice that we see in the literature. The first con-
cerns the suggestion, apparently of some currency, that we re-
ject the notion of logical form, and “do semantics directly” in a
computational model On my account this is a mistake, pure
and simple: to buy into the computational framework is to
believe that the ingredients in any computational process are
inherently linguistic, in need of interpretation. Thus they too
will need semantics; the internalisation of English into a com-
puter (θ) is a translation relationship (in the sense of preserv-
ing φ, presumably)—even if it is wildly contextual, and even
if the internal language is very different in structure from the
structure of English. It has sometimes been informally sug-

20. See note 10, above.

11 · 18	 Indiscrete Affairs · I

Draft Version 0.81 — 2018 · Mar · 3

gested, in an analogous vein, that Montague semantics can-
not be taken seriously computationally, because the models
that Montague proposes are “too big”—how could you pos-
sibly carry these infinite functions around in your head, we
are asked to wonder. But of course this argument commits
a use/mention mistake: the only valid computational reading
of Montague would mean that mentalese (S) would consist
of designators of the functions Montague proposes, and those
designators can of course be a few short formulae,

It is another consequence of the view I am presenting that
any semanticist who proposes some kind of “mental structure”
in his or her account of language is committed to providing an
interpretation of that structure. Consider for example a pro-
posal that posits a notion of “focus” for a discourse fragment.
Such a focus might be viewed as a (possibly abstract) entity in
the world, or as a element of computational structure playing
such-and-such role in the behavioral model of language un-
derstanding. It might seem that these are alternative accounts:
what I am arguing is that an interpretation of the latter must
give it a designation (φ); thus there would be a computational
structure (being biased, I will call it the focus-designator), and
a designation (that I will call the focus-itself). The complete
account of focus would have to specify both of these (either
directly, or else by relying on the generic declarative seman-
tics to mediate between them), and also tell a story about how
the focus-designator plays a causal role (ψ) in engendering
the proper behavior in the computational model of language
understanding.

There is one final problem to be considered: what it is to
design an internal formalism S (the task, we may presume, of
anyone designing a knowledge representation language). Since,
on my view, we must have a semantics, we have the option
either of having the semantics informally described (or, even
worse, tacitly assumed), or else we ean present an explicit ac-

	 11 · Linguistics and Computational Semantics

	 11 · 19

Draft Version 0.81 — 2018 · Mar · 3

count, either by defining such a story ourselves or by borrow-
ing from someone else. If the Lisp case can be taken as sugges-
tive, a purely declarative model theory will be inadequate to
handle the sorts of computational interactions that program-
ming languages have required (and there is no a priori reason
to assume that successful computational models for natural
language will be found that are simpler than the programming
languages the community has found necessary for the modest
sorts of tasks computers are presently able to perform). How-
ever it is also reasonable to expect that no direct analogue to
programming language semantics will suffice, since they have
to date been so concerned with purely procedural (behavioral)
consequence. It seems at least reasonable to suppose that a
general interpretation function, of the Σ sort mentioned ear-
lier, may be required.

Consider for example the kl-one language presented by
Brachman et al.21 Although no semantics for kl-one has been
presented, either procedural or declarative, its proponents
have worked both in investigating the θ-semantics (how to
translate English into kl-one), and in developing an informal
account of the procedural aspects. Curiously, recent directions
in that project would suggest that its authors expect to be able
to provide a “declarative-only” account of kl-one semantics
(i.e., expect to be able to present an account of φ independent
of ψ), in spite of the foregoing remarks. My only comment is
to remark that independence of procedural consequence is not
a pre-requisite to an adequate semantics; the two can be re-
cursively specifiable together; thus this apparent position is
stronger than formally necessary—which makes it perhaps of
considerable interest.

In sum, I claim that any semantical account of either nat-
ural language or computational language must specify θ, ψ,
and φ; if any are left out, the account is not complete. I deny,
furthermore, that there is any fundamental distinction to be

21. Brachman (1979).

11 · 20	 Indiscrete Affairs · I

Draft Version 0.81 — 2018 · Mar · 3

drawn between so-called procedural languages (of which Lisp
is the paradigmatic example in ai) and other more declarative
languages (encodings of logic, or representation languages). I
deny as well, contrary to at least some popular belief, the view
that a mathematically well-specified semantics for a candi-
date “mentalese” must be satisfied by giving an independently
specified declarative semantics (as would be possible for an
encoding of logic, for example). The designers of krl,22 for
example, for principled reasons denied the possibility of giv-
ing a semantics independent of the procedures in which the
krl structures participated; my simple account of Lisp has at
least suggested that such an approach could be pursued on a
mathematically sound footing. Note however, in spite of my
endorsement of what might be called a procedural semantics,
that this in no way frees one from giving a declarative seman-
tics as well; procedural semantics and declarative semantics are
two pieces of a total story; they are not alternatives.

22. Bobrow and Winograd (1977).

a30

	 11 · Linguistics and Computational Semantics

	 11 · 21

Draft Version 0.81 — 2018 · Mar · 3

Annotations†

a1	 ·1/20	 «…Intro or whatever; maybe publication data goes here too?…»
«…Also say that this, too is a little simplistic?»
«…More serious is what I make of it; the ∆ between this and ex-

ternal” and “conceptual role” semantics would be good to explain
if I can …»

«…Cf. A8 and A17 and A20…Also (p. 3) “use computational
models to explain natural language semantics, if the computational
models are themselves in need of semantical analysis”—this should
be indicated (early) as a driving motivation…»

«…Note ·14/-1:15/0. This, as all the other papers in part C,
emerge as worthwhile only in their later passages ;-)…»

a2	 ·1/-1/1:3	 There are three claims embedded in this sentence: (i) that being
semantic is a distinguishing characteristic of computing; (ii) that
it is the distinguishing mark; and (iii) that the necessary (whether
sufficient or not) semantics must be attributed—where ‘attributed,’
as usual, was taken to mean only attributed; authentic or original
semantics being the implied contrast. I certainly believed (i) in 1982,
the year this was written; I would still believe it today, except for the
fact, as discussed in “The Foundations of Computing” (ch. 1), that
I no longer believe that computation is a theoretically interesting
subject matter, and so would be reluctant to say that it has any
disintuishing marks at all. Whether I believed (ii) or (iii) in 1982 I no
longer distinctly remember.1

Even at the time, though, I was suspicious of a related thesis,
then equally prevalent and still widely believed: that the formality
condition—the claim that a symbol system works indepedently of
the semantics of its ingredient symbols—is true of real-world com-
puters. That the two claims are different is evident from the pro-
posal, widely believed in the 1980s, in the heyday of classical ai and
cognitive science, that the human mind might be a formal symbol
manipulation system. If that were true, it would block any impli-
cation from formality to attributed semantics. One might imagine
the converse implication to be more secure, on the grounds that if

†References are in the form page/paragraph/line; with ranges (of any type)
indicated as x:y. For details see the explanation on p.·…
1. This paper was published earlier than any other in this collection, except for
the fragments of the dissertation included in ch. 2. See annotations a17 and
a20, below.

11 · 22	 Indiscrete Affairs · I

Draft Version 0.81 — 2018 · Mar · 3

semantics are attributed, they must be relational, and hence would
surely be metaphysically barred from playing a constitutive role in
how computer work. But even in the late 1970s, as a graduate stu-
dent, I was troubled by the ontological implications of this claim.
Some form of semantics, it seemed to me, whether authentic or de-
rivative or anything else,2 was surely necessary in order to call any-
thing symbol manipulation. If computation was defined as formal
symbol manipulation, then the whole subject matter of computing
might be relationally defined, making constitutive independence
claims much more difficult to assess, especially ontologically. (Cf.
also ·2/0/-5:-1, and annotation a6.)

a3	 ·2/0/3	 Instead of “linguistic facilities” I should have said intentional facili-
ties (or capacities)—but cf. annotation a8, below. Note, too, that
the term ‘language’ was (and is still) used in computer science as
a general term covering representational systems than in linguis-
tics or philosophy—without any implication of a system used for
communication.

a4	 ·2/0/5:8	 The wording of this sentence betrays its early provenance.2.5 What
is evident is that we semantically interpret the function and display
and buttons and other aspects of the external mereology of a calcu-
lator. But it is facile blithely to claim that we similarly interpret its in-
gredients. It may in fact be true—e.g., for the engineers and program-
mers—but most of us do not think about a calculator’s ingredients
at all (at least in any sense in which that is taken to mean “inner
constitutive parts”).

In general, at the time, I was inappropriately clear on the person-
al/subpersonal distinction in the human case, and on its machine
(system/subsystem) analogue.

a5	 ·2/0/-9:-5	 Cf. the discussion of logic, and its constitution in terms of causal
mechanisms that honour deferential semantical norms, in §… of
the Introduction.

a6	 ·2/0/-5:-1	 Re the word ‘attributed,’ cf. annotation a2, above. My then-growing
conviction that computing would never succumb to physical reduc-
tion (notwithstanding fn. 3), and the resulting implication that a
theory of computing must rest on a theory of intentionality (rather

2.Cf. the discussion at … of how attributed or derivative semantics is still a
version of semanticity; derivative does not mean ersatz.
2.5.Note that the paper was written five years before the publication of Den-
nett’s Intentional Stance, the terminology of which could have been used here
to good effect.

	 11 · Linguistics and Computational Semantics

	 11 · 23

Draft Version 0.81 — 2018 · Mar · 3

than the other way around), were the sorts of consideration that
undermined my trust in the formality condition (to say nothing of
challenging the very idea of “naturalizing” intentionality). I would
now formulate this concern in terms of a rejection of blanket mech-
anism (Introduction, §…).

a7	 ·2/n4/3:5	 The emotional tenor of the phrase “dashing the hope that computa-
tional psychology will offer a release from the semantic irreducibility
of previous accounts of human cognition” betrays the fact that, in
spite of the remarks above (cf. annotations a2 and a6), I was not yet
(in 1982) at ease with abandoning what many philosophers would
take as the prospects of naturalizing computation, let alone mind.3

a8	 ·3/1/2	 I would now say—and would probably then have said—fundamen-
tally intentional rather than fundamentally linguistic—but the paper
was presented at a meeting of the Association for Computational
Linguistics, and it was to that linguistic audience that the plea of

“common subject matter” was being addressed.
a9	 ·3/1/4	 The parenthetical indicates that I had doubts about the legitimacy

of assuming that semantical theories should be formal—but the
approach articulated in the paper (in terms of θ, φ, and ψ) would
by most people’s lights count as formal. The focus of my concerns
with formality were (and have remained) primarily ontological, on
whether computation itself was or is a formal phenomenon. I was
less exercised about formal theories, where the predicate is assigned
to the theoretical machinery used to analyze the phenomenon in
question. Cf. the discussion of formality in §… of “The Foundations
of Computation” (ch. 1).

a10	 ·3/1/-4:-1	 Two subtleties lie below the surface.
First, those who use computational models to explain natural

language semantics might feel that their semantical debts are ulti-
mately discharged by mathematicians and computer scientists who
provide semantical analyses of the computational systems and for-
malisms they employ in their analyses. Part of my brief in investigat-
ing semantics in a computational setting was to suggest that, even
if such semantical accounts were to have been given (unlikely, as it
happens—providing formal semantics for langauges that are used

3. Few philosophers would think that computation needs naturalizing, of
course. For whatever reason—perhaps influenced by computing’s status as
a science—they would take it to be naturalistically palatable from the get-go.
Clearly, even in the early 1980s I was already doubting that this was so.

11 · 24	 Indiscrete Affairs · I

Draft Version 0.81 — 2018 · Mar · 3

is in fact rare), the concerns of such accounts, crafted by computer
scientists, were almost sure to have been entirely behavioral, in spite
of their use of seemingly referential semantical vocabulary,4 and so
the debt was unlikely to have been repaid. To answer to the legiti-
mate concerns of linguistic semantics, in my view, would require a
radically different kind of semantical analyses of computational sys-
tems than computer science took itself to be providing (as argued in
ch. 2)—presumably along the lines suggested in this paper.

Second, someone might object that all forms of semantical anal-
ysis ultimately amount to no more than translation—since analy-
ses are inevitably conveyed in language of some sort. «—Yikes; fix

the following—» Fair enough; and this is not the place to take on
metaphilosophical considerations of what it is to analyze, in Eng-
lish, the semantics of English (cf. debates about the adequacy of
deflationary accounts of truth). But providing an analysis in English
or another natural language, which it is reasonable to suppose is
antecedently understood, is different from translating into a formal
or computational system that cannot be accorded any such a priori
(or perhaps even a posteriori) status.

a11	 ·3/-1/5:9	 This discussion of the “operational cast” that has been given to the
term ‘semantics’ in computing was written before I had formulated
the distinction between ingrediential and specificational views of pro-
grams—as for example discussed in “…” (ch. …); see also figure … of
ch. 7.5

a12	 ·4//1:2	 This was intended to be parsed as “(standard (model theories))”—
i.e., model-theoretic analyses of the standard sort—not as “((stan-
dard model) theories),” in a sense that would mean theories of a or
the standard model.

a13	 ·4//12:14	 Cf. the discussion of compositional semantics in §… of the
Introduction.

a14	 ·4//-8:-7	 The “computational hypothesis of mind” would more normally
be called the “computational theory of mind” (ctom). Whether it
is true that computational semantics presumes the ctom could be
debated, however. Likely most practicioners would make such an
assumption—and especially in 1982 this was effectively a field-wide
presupposition.

4. And in spite of any potential protestations on the part of the analysts.
5. A distinction that I have since come not so much to disparage as to blur. Cf.
the dicsussion of the fan calculus in …

	 11 · Linguistics and Computational Semantics

	 11 · 25

Draft Version 0.81 — 2018 · Mar · 3

a15	 ·3/n6/1:		 Cf. the discussion of overlapping technical vocabulary in §… of the
	 ·4/n0/4	 Introduction.
a16	 ·5/2/4	 «Cf …»
a17	 ·5/-2/-3:-1	 This framework was developed for 3Lisp, as discussed in Part b.
	 (re fig. 2)	 Note that this paper was presented in 1982, the same year that the

3Lisp dissertation was completed. The papers presenting 3Lisp, in-
cluded here as chs. 3 and 4, were not presented until two years later,
in 1984 (though I had talked about it widely; see annotation a20,
below).

a18	 ·6/0/3:4	 Calling the function ‘θ’ mapping external expressions (“notations”)
onto internal structures an interpretation function was a passing us-
age. It is not how I generally used the term ‘interpretation’; in fact
by the end of the paragraph I have noted that I henceforth called it

‘internalization.” Using the term ‘interpretation’ for this relation will
seem odd to logicians and philosophers—and to most computer
scientists as well. It was so common at the time, however, and to
some extent still is today, for researchers in ai and cognitive science
to refer to the internal correlates of natural language expressions
as their “semantics”—and to talk about “computing the semantics”
of natural language (cf. annotation a… in ch. …)—that I may have
introduced the relation in this way here in order to mesh with that
practice. (Cf. ·9/1:·10/1.)

Throughout, however, my primary concern was to distinguish
that relation from what I took to the more substantive semantical
relation ‘φ’ relating “expressions in S to the world of discourse.5.5

a19	 ·8/0/12:13	 This is the “antisemantical” reading of formality discussed in §… of
“The Foundations of Computing” (ch. 1), which I would soon come
to challenge. (See also annotations a… in ch. …, a… in ch. …, and
a… in ch. …)

a20	 ·8//-2:-1	 This is a reference to the 2Lisp and 3Lisp work discussed in Part b. Cf.
annotation a17, above, as regards dates. This paper was presented
before any papers on 3Lisp had been written, though during 1982 I

.5.5. Note (in spite of ·7/0) that to assume that ‘θ’ deals with relations be-
tween external language and internal structures, and ‘φ’ with relations be-
tween internal structures and external task domains, is to assume that the
linguistic-expression/symbol/referent and outside/inside/outside boundaries
align—which may often be true, but is certainly neither always nor necessarily
the case, even if by definition the “internal elements” are always inside mind
or machine. Cf. §… of ch. 1, and much of Part b

11 · 26	 Indiscrete Affairs · I

Draft Version 0.81 — 2018 · Mar · 3

had given more than a dozen talks on 3Lisp and reflection, one of
which triggered sri International’s Jane Robinson to request that I
prepare this paper for the 1982 meeting of the Association of Com-
putational Linguistics.

a21	 ·9//-3:-1	 As I soon came to realize, indexicality and deixis are in no way so
easily dismissed. Cf. o3 and my (forthcoming) “Who’s on Third?”,
where I argue that deixis is a foundational fact about the universe—
in effect, being the underlying ontological condition that warrants
the fact that differential equations are the preferred epistemic way
to formulate its fundamental physical laws.

a22	 ·10/2/7	 The word “independent” is too strong. One of the points of the
3Lisp analysis in Part b is to show that ψ and φ can be theorized
only together, in terms of an overarching “full significance” function
Σ. What I meant in this passage is that I had not seen an analysis of
a programming language that gave accounts of both ψ and φ, rec-
ognizing their conceptual difference, even if they were inextricably
(and normatively) interlinked. Cf. the discussion of logic in §… of
the Introduction (and annotations … in ch. … and a… in ch. …).

a23	 ·10//-5:-1	 Strict use/mention hygiene requires keeping these apart: program
identifiers that designate data structures, on the one hand, and the
data structures thereby designated, on the other (and both from the
people and money and such that the data structures in turn desig-
nate or carry information about). Nevertheless, this is an example
of the sort of semantical strictness that I have come to believe is
theoretically untenable—i.e., that always maintaining the distinction
complicates theory to the point of obfuscating the fundamental
regularities that require explication, and is ontologically unjustified
and unjustifiable as well. Cf. “The Correspondence Continuum” (ch.
10) and “The Foundations of Computing” (ch.1).

Providing a flexible way of making such distinctions only if and
when appropriate is one of the goals of the fan calculus (cf. «…»).

a24	 ·11/0/-4:-1	 Cf. annotation a11, above. That terms (e.g., identifiers) in programs
are meta-syntactic (more accurately: meta-structural) is one of the
insights that lead to making the distinction between specificational
and ingrediential view of programs discussed at length in ch. 2.

a25	 ·12/2/-2:-1	 Re Teco and Smalltalk see annotations a… in ch. … and a… in ch. …,
respectively.

a26	 ·12/3/1:2	 This is another endorsement of the then-ubiquitous view that com-

	 11 · Linguistics and Computational Semantics

	 11 · 27

Draft Version 0.81 — 2018 · Mar · 3

6. It is not uncommon to think that connectionist networks and neural mod-
els of cognition (and brain) are not “symbol manipulation systems,” not only
in the snese of not containing discrete, compositionally interpretable symbols,
but more strongly as not being representational or semantic at all. But the fact
that their builders do not so interpret them does not mean that they are not
semantic, of course. The more interesting hypothesis is that, sure enough, they
are or anyway may be semantic—but that their interpretations (φ) are or may
not be humanly intelligible.

puters are formal symbol manipulators, in the antisemantical sense
of ‘formal.’ Cf. annotation a19, above.

a27	 ·12/3/4:-1	 For example, the effect of running or executing the program frag-
ment “x := f(y) + g(z)” might not be to set variable x to anything, if,
while executing g(z), the body of that procedure were to perform
a non-local exit from the entire encompasing procedure, or were
otherwise to invoke continuations (or some other similar construct)
so as to violate procedural locality.

a28	 ·13/0/-3:-1	 The phrase “that humans can interpret” is an implicit reference to
the presumption that the semantics of a formalism are inevitably at-
tributed; cf. annotations a2 and a6, above. The main point, though,
is merely that a formalism must have a denotational or declarative
interpretation (φ) in order to count as a logic; cf. the discussion in §…
of the Introduction. Nothing should be inferred from the use of the
word ‘interpret’ here that the (attributed or not) semantics would
need to be intelligible.6

a29	 ·14/0/3:4	 In fact one cannot actually say anything in Prolog either, its alleged
declarative semantics notwithstanding. In spite of what is said in
the rest of this paragraph, expressions in a Prolog program do not
have assertional force.

a30	 ·19//-2:		 This statement (that there is no difference between procedural and
	 ·20//3	 declarative languages) is a little glib. Nor is it clear, as the passage

would suggest, that the two varieties exhaust the space of possi-
bilities. Cf. the preceding annotation about assertional force, for
one thing; it is not clear, at least in any systems we would presently
consider paradigmatic, that one can assert anything in a calculus of
either type. My point was only to deflect the idea, common at least
at the time, that an adequate semantical analysis of procedural lan-
guages could limit itself to focusing on effect and behavioral import
(ψ)—and of declarative languages, to issues of reference or denota-
tion (φ). As indicated by its last sentence, the brunt of the paper

11 · 28	 Indiscrete Affairs · I

Draft Version 0.81 — 2018 · Mar · 3

is to argue that both types of calculus, whatever their differences,
require both forms of analysis—normatively tied together.

	

	IA · I · C · 11 (Ling & Comp) — Body (C.05)
	IA · I · C · 11 (Ling & Comp) — Annotations (C.05)

